Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats.
نویسندگان
چکیده
PURPOSE Recent studies have reported neuroprotective effects of erythropoietin (EPO) and vascular endothelial growth factor (VEGF). The purpose of the present study was to clarify their influence on neurite outgrowth and regeneration of rat retinal ganglion cells (RGCs) in vitro and to elucidate the expression of corresponding receptors in the rat retina in vivo. METHODS Retinal explants from postnatal rats were stimulated with VEGF alone; VEGF in combination with anti-VEGF-receptor (VEGF-R)-2 antibody or T-type Ca2+ channel blocker ethosuximide (ESX); EPO alone; or EPO in combination with anti-EPO-receptor antibody or ESX. The presence of the corresponding receptors in the rat retina was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and by immunohistochemistry. RESULTS EPO induced a stable improvement of neurite outgrowth of RGCs in a dose-dependent manner (5 x 10(-15) M to 5 x 10(-13) M) up to 169% (P < 0.05). Treatment of the explants with anti-EPO-R antibody (1:80 dilution) and with ESX (5 microM) totally inhibited EPO-mediated effects on RGCs. In comparison, VEGF (50 ng/mL), induced neurite outgrowth of retina explants up to 167% (P < 0.05), which again was inhibited in the presence of anti-VEGF-R2 antibody or ESX. Transcripts of EPO-R, VEGF-R1, and VEGF-R2 were detected by RT-PCR. Intense immunoreactivity for VEGF-R1, VEGF-R2, and EPO-R were found in the RGC layer of the retina. CONCLUSIONS The data demonstrate for the first time that EPO and VEGF have a significant and specific biological effect on neurite regrowth of axotomized RGCs. Therefore, these results imply that EPO and VEGF have not only a neuroprotective but also a neuroregenerative role in ischemic retinal conditions.
منابع مشابه
The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro.
PURPOSE Recent studies demonstrated that short peptides derived from activity-dependent neurotrophic factor (ADNF) and activity-dependent neuroprotective protein (ADNP) are neuroprotective at femtomolar concentrations. We evaluated these findings in cultures of purified rat retinal ganglion cells (RGCs) using two such peptides: ADNF-9 and NAP. In a second step, the influence of these peptides o...
متن کاملPigment epithelium-derived factor promotes neurite outgrowth of retinal cells.
The ability of pigment epithelium-derived factor (PEDF) to promote neurite outgrowth of retinal cells through mitogen-activated protein kinase (MAPK) pathways was examined. Neurite outgrowth effects of PEDF were determined by quantifying the neurite length extending from cultured chick embryo retinal explants, and neurite outgrowth ratio of R28 cells (a neural cell line derived from the neonata...
متن کاملHydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity.
PURPOSE There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of thes...
متن کاملCNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism.
Transplantation of progenitor cells to the CNS has shown promise in neuronal and glial replacement and as a means of rescuing host neurons from apoptosis. Here we examined the effect of progenitor grafts on neurite extension in the degenerating retina of rd1 (retinal degeneration 1) mice. Transplantation of retinal progenitor cells induced increased matrix metalloproteinase-2 (MMP2) secretion, ...
متن کاملAutomated analysis of neurite outgrowth in mouse retinal explants.
Despite intensive research efforts over the past years, regeneration of injured axons in the central nervous system remains elusive. In the quest for neurostimulatory agents that promote regeneration, well-defined models and analysis methods are required. Tissue explant cultures closely resemble the in vivo situation, making them ideal to study the effect of compounds on the neuro-glial network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2002